skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Richter, Florian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Let ( G / Γ<#comment/> , R a ) (G/\Gamma ,R_a) be an ergodic k k -step nilsystem for k ≥<#comment/> 2 k\geq 2 . We adapt an argument of Parry [Topology 9 (1970), pp. 217–224] to show that L 2 ( G / Γ<#comment/> ) L^2(G/\Gamma ) decomposes as a sum of a subspace with discrete spectrum and a subspace of Lebesgue spectrum with infinite multiplicity. In particular, we generalize a result previously established by Host–Kra–Maass [J. Anal. Math.124(2014), pp. 261–295] for 2 2 -step nilsystems and a result by Stepin [Uspehi Mat. Nauk24(1969), pp. 241–242] for nilsystems G / Γ<#comment/> G/\Gamma with connected, simply connected G G
    more » « less
  2. We show that every set A A of natural numbers with positive upper Banach density can be shifted to contain the restricted sumset { b 1 + b 2 : b 1 , b 2 ∈<#comment/> B  and  b 1 ≠<#comment/> b 2 } \{b_1 + b_2 : b_1, b_2\in B \text { and } b_1 \ne b_2 \} for some infinite set B ⊂<#comment/> A B \subset A
    more » « less
  3. Motivated by questions asked by Erdős, we prove that any set A ⊂<#comment/> N A\subset \mathbb {N} with positive upper density contains, for any k ∈<#comment/> N k\in \mathbb {N} , a sumset B 1 + ⋯<#comment/> + B k B_1+\cdots +B_k , where B 1 B_1 , …, B k ⊂<#comment/> N B_k\subset \mathbb {N} are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of k = 2 k=2
    more » « less
  4. In this work we study the set of eventually always hitting points in shrinking target systems. These are points whose long orbit segments eventually hit the corresponding shrinking targets for all future times. We focus our attention on systems where translates of targets exhibit near perfect mutual independence, such as Bernoulli schemes and the Gauß map. For such systems, we present tight conditions on the shrinking rate of the targets so that the set of eventually always hitting points is a null set (or co-null set respectively). 
    more » « less